Algebraic Number Theory

Exercise Sheet 1

Prof. Dr. Nikita Geldhauser	Winter Semester 2024-25
PD Dr. Maksim Zhykhovich	21.10.2024

Exercise 1. Show that $\mathbb{Z}[X]$ is not a principal ideal domain. *Hint:* Consider the ideal (2, X), and show that it is not principal.

Exercise 2. Let $\mathbb{Q} \subset L$ be a number field and α an element in L. Let P(X) be the minimal polynomial of α over \mathbb{Q} . Show that α is integral over \mathbb{Z} if and only if $P(X) \in \mathbb{Z}[X]$.

Hint: one may use Gauss Lemma from the "Algebra" lecture.

Exercise 3. Show that the ring $\mathbb{Z}[X]/(X^2-3)$ is integral over \mathbb{Z} , and that the ring $\mathbb{Z}[X]/(2X^2-3)$ is not integral over \mathbb{Z} .

More generally, let A be a factorial ring and $P(X) \in A[X]$ an irreducible polynomial. Show that A[X]/(P(X)) is integral over A if and only if the leading coefficient of P(X) is a unit in A (an element in A is called a unit if it is invertible in A).

Exercise 4. Let d be a square-free integer. Let $L = \mathbb{Q}(\alpha)$ be a quadratic field, where $\alpha^2 = d$. Let A be the set of elements in L integral over Z. Show the following:

- (a) if $d \equiv 2$ or $d \equiv 3 \mod 4$, then the set A consists of all elements of the form $a + b\alpha$ with $a, b \in \mathbb{Z}$.
- (b) if $d \equiv 1 \mod 4$, then the set A consists of all elements of the form $\frac{1}{2}(u+v\alpha)$ with u and $v \in \mathbb{Z}$ of the same parity.

Hint: Any element in L is of the form $a+b\alpha$ with $a, b \in \mathbb{Q}$. Compute the minimal polynomial of $a + b\alpha$ over \mathbb{Q} , then apply Exercise 2.

Using the explicit description of A from (a) and (b), show that

- (c) the set A is a ring.
- (d) the set A is a free \mathbb{Z} -module of rank 2.